Tetrahedron Letters No.49, pp. 4911-4914, 1967. Pergamon Press Ltd. Printed in Great Britain.

ASYMETRIC IndUCTION. II. ON THE EXTENT OF bOAD BRRAKING AND MAKING IN THE
TRANSITION STATES OF SONR ADDITIONS TO CARBONYLS
Gerasimos J. Karabatsos and Thomas H. Althuis Department of Chemistry, Michigan Stare University

East Lansing, Michigan 48823
(Received in USA 28 July 1967)
The recently proposed (1) empirical model of asymetric induction was based on the assumption that little bond breaking and making marks the diastereomeric transition atates that control product atereospecificity. Thus, diastereomeric product ratios A/B were predicted with moderate success from the relative magnitudes of M - 0 (I) vs. $L-0$ (I^{\prime}) interactions. It

was pointed out (1) that diacrepancies between predicted and experfaental ratios ought to be expected in casea where extensive bond breaking and making has occurred in the transition state, as the experimental ratios in such cases would be influenced by the relative stabilities of A and B.

A simple probe into the validity of the assumption, as pertinent data on the relative stabilities of diastereomeric products are scarce, is the study of reactions leading to diastereomers whose structures and relative stabilities are a priori known to be practically the same. This condition is fulfilled when R and R^{\prime} are isotopically related to each other. In such reactions, the diastereoneric product ratio A/B should decrease as the extent of bond breaking and making increases, and approach unity in the extrene case of conplete bond breaking and making (2). The problen of determining the diastereoneric product ration becomes trivial, as groupa R, or R^{\prime}, are diastereotopically (3) related in A and B and therefore distinguishable by mer.

The results of reactions 1 and 2 will now be presented (4). PIG. $1 A$ shows the $A B$

part ($\left.J_{A B}=10.6 \mathrm{cps} ; \Delta u_{A S}=7.2 \mathrm{eps}\right)$ of the mar spectrum of neat 1iquid 2-phenyl-1-propanol-

$0,2-\mathrm{d}_{2}$; FIG. 18 shows the corresponding section of the spectrum of the diastereomeric product mixture from reaction 1 . The ratio A / B reported in TABLE I corresponds to the integrated area ratio of the two signals (5) at $\tau 6.58$ and 6.46. The corresponding product ratio from reaction 2 was analogounly calculated from the signale of the diastereotopically related methyl groups (6).

In discussing the data sumarized in TABLE I, we wish to comment first on the temperature indepeadence of the experimental $\Delta \Delta G^{\ddagger}{ }_{A B}$ values. It was pointed out (1) that $\Delta \Delta S_{A B}^{+}$contributions to $\Delta \Delta G^{*}{ }_{A B}$ will linit the usefulnese of the model, as it does not make allomances for such contributions. The present results, and those already available (7), constitute reaseuring evidence thet in the cases where the model applies $\Delta \Delta H_{A B}{ }_{A B}$ controls $\Delta \Delta G^{\ddagger}{ }_{A B}{ }^{\text {* }}$

With respect to the question of bond breaking and making in the transition atates of the reactions pertinent to the proble, the liaited nuber of the results pernits oniy tentative conclusions to be drawn. From the magitude and close agreement of the experimental $\Delta A G^{\circ} A B$ value of entry 2 (TABLE I) with that of entry A and with the calculated $\Delta \Delta G^{\ddagger} A B$ value, it maly be concluded, as previously suggested (1), that the transition state of Grignard additions co carbonyls occurs very early in the reaction coordinate. The considerably smaller, however, $\Delta \Delta G^{\ddagger}$ as values of entries ${\underset{\sim}{4}}^{2}$ and 5 , when compared to the calculated and to that of entry 3 , indicate extensive bond breaking and anking in the transition states of the reactions of aldehydes with

table I

dLASTEREOHERIC PRODUCT RATIOS FROI $\underline{1}, \underline{2}$ AND RELATED RRACTIONS.

\%0.	Subatrate	Mucleophile	Solvent	Temp; ${ }^{\circ} \mathrm{C}$	$\underline{A / B}$	$\Delta \Delta G_{A B}^{\neq} \text {exp. }{ }^{b}$	$\triangle \Delta G_{A B}^{\ddagger}$, calc. ${ }^{\text {b, }}$ c
$\stackrel{1}{2}$	$4 \mathrm{CH}_{3} \mathrm{CH}-\mathrm{CHO}$	$\mathrm{CH}_{3} \mathrm{MgI}$	Ether	25	$67 / 33^{\text {d }}$	-0.41	-0.60
$\underset{\sim}{2}$	${ }_{+C H}^{3} \mathrm{CD}^{\text {- }} \mathrm{COCD}_{3}$	3	"	"	75/25	-. 65	- . 60
	"	"	"	-55	82/18	-. 64	-. 60
3	${ }_{4} \mathrm{CH}_{3} \mathrm{CH}-\mathrm{COCH}_{3}$	LaAlH_{4}	"	25	71/29 ${ }^{\text {d }}$	- . 55	- . 60
4	$4 \mathrm{CH}_{3} \mathrm{CD}-\mathrm{CHO}$	LIAlO_{4}	"	"	58/42	-. 19	-. 60
	"	"	"	-57	60/40	-. 18	-. 60
2	"	NaBD_{4}	THF	66	55/45	-. 14	- . 60
	"	"	${ }^{\prime \prime}$	0	57/43	-. 15	- . 60
$\underset{\sim}{6}$	"	"	$\underline{\text { i-PrOH }}$	25	63/37	-. 32	$-.50^{\text {e }}$
	"	"	"	-64	70/30	-. 35	-. $50{ }^{\text {e }}$

a See ref. $5^{b} \Delta \Delta G_{A B}^{\#}=\Delta G_{A}^{\ddagger}=\Delta G_{B}^{\ddagger}$ in Kcal./mole. ${ }^{c}$ See ref, $1{ }^{d}$ From D. J. Cram and F. A. Abd Elhafer, J. Am. Chem. Soc., 74, 5828 (1952). e As pointed out in ref. 1 the values involving the phenyl group are solvent dependent and decrease with increase of solvent dielectric constant. This value was estimated from the dielectric constant of 2-propanol.
lithium aluainum deuteride and sodium borodeuteride. Other conclusions, such as the relationship between steric effects and extent of bond breaking and making, that may be entertained from the present results, must await further experimentation.

Acknowledgaent. We thank the Petroleum Research Fund, administered by the American Chemical Society, for financial support (Grant 2722-A1,4).

Reference:

1. G. J. Karabacsoa, ․ . An. Chen. Soc., 89, 3167 (1967),
2. Although the products are more or leas energetically equivalent, the transition states leading to them are not quite so, becauee R^{\prime} is etill partially bonded to other groups.
3. The terms enantiotopic and diastereotopic, whose use we strongly recomend, have been introduced by K. Misiow and M. Raban, "Topics in Stereochemistry", Vol. 1, M.L. Allinger and Y. L. Eliel, Ede., John Wiley and Sone, Inc., New York, H. Y., 1967, Ch. 1.
4. Deuterium instead of hydrogen was used on the asymetric carbon in order to aimplify the mar apectra.
5. Absolute configurations of diastereomers A and B have not, as yet, been detarained. We have tentatively assumed that the major diastereomer is the one predicted by the model.
6. The diastereotopic methyl groups were indistinguishable in neat liquid aolutions of the compound. They were diatinguishable in acetone, DASO, DAF, pyridine, acetonitrile, cyclohexane and carbon tetrachloride. In these solvents their chemicel ahifts differed by 3.4 to 1.2 cps .
7. Y. Gault and H. Felkin, Bull. Soc. Chin. , 1342 (1960).
